Как связаны биссектриса и окружность

В геометрии могут объединиться даже очень различные на первый взгляд фигуры, такие как окружность и треугольник. У каждой есть свои особенности, которые позволяют отличать их от прочих фигур, даже если они очень похожи: например, круг и окружность – это совсем не одно и тоже.

Разница между кругом и окружностью состоит в отношении к плоскости. Если упрощенно, то под плоскостью понимают поверхность, на которой и строятся фигуры. Саму плоскость тоже можно считать фигурой. Окружность – это совокупность всех точек на плоскости, которые образуют фигуру, а круг – это часть плоскости, которую ограничивает окружность. Поэтому может быть сектор или сегмент круга – но понятие дуги относится только к окружности.

Одним из важнейших понятий, связанных с окружностью, является радиус – расстояние от центра окружности до любой её точки. Чтобы произвести вычисление радиуса, нужно знать длину окружности, её площадь или диаметр. Проще всего посчитать радиус через диаметр – просто разделить длину диаметра на два.

Зная длину, тоже можно вычислить радиус – если формула длины – это L=2πR, то радиус вычисляется по формуле R= L/2π.

Окружность можно как вписать в любой треугольник, так и начертить вокруг любого треугольника так, чтобы все вершины треугольника касались окружности. Чтобы описать окружность вокруг треугольника, надо найти точку пересечения всех углов треугольника – она будет центром описываемой окружности. Чтобы, напротив, вписать круг в треугольник, надо к середине каждой стороны провести перпендикулярную прямую. Точка их пересечения и будет центром вписанного круга.

Основное свойство вписанного в окружность треугольника состоит в том, что вычислить его площадь очень просто – для этого надо знать радиус окружности и длины сторон треугольника. Для этого используется формула: P/2*R, где P – периметр, а R – радиус окружности.

Значение биссектрисы – луча, исходящего из вершины угла и делящего его напополам, – не ограничивается тем, что с её помощью можно вписать круг в треугольник. Назовем основные свойства биссектрисы треугольника, которые существенно облегчают процесс решения геометрических задач.

Во-первых, биссектриса делит противоположную сторону на части, пропорциональные прилегающим сторонам. Во-вторых, в правильном треугольнике биссектриса является медианой и высотой, а в равнобедренном треугольнике совпадает с медианой и с высотой только в том случае, если проведена от вершины к основанию. В-третьих, как уже упоминалось, биссектрисы треугольника пересекаются в одной точке, которая является центром окружности, вписанной в этот треугольник.

При решении задач, связанных с треугольниками или окружностями, важно отличать биссектрису от медианы или высоты, а радиус или диаметр – от хорды.

Автор публикации

не в сети 2 недели

Александр

0

QTH - г. Донецк, ДНР.

Комментарии: 7Публикации: 880Регистрация: 11-08-2015

Читайте также:

Авторизация
*
*
Войти с помощью: 
Регистрация
*
*
*
Войти с помощью: 
Генерация пароля
Translate to»